Posts tagged “new products” (Page 7)

You are currently viewing a selection of posts from the Pololu Blog. You can also view all the posts.

Popular tags: community projects new products raspberry pi arduino more…

Updated product: A-Star 32U4 Prime LV

Posted by Tony on 28 March 2019

We have updated our A-Star 32U4 Prime LV with a new regulator that offers a wider operating voltage range and increased current capabilities. For those of you not already familiar with our A-Star 32U4 Primes, they are a series of ATmega32U4-based, USB-programmable controllers with integrated regulators that offer operating voltage ranges not available on typical Arduino-compatible products; this new “LV” variant features an improved buck-boost converter that enables efficient operation from 2 V to 16 V power supplies (Note: it requires an input voltage of at least 3 V to start, but it can operate down to 2 V after startup). The A-Star Primes are arranged in the common Arduino form factor exemplified by the Uno R3 and the Leonardo, so they are compatible with many Arduino shields, including all of the Arduino shields we carry.

In addition to the increased input voltage range for the new A-Star Prime LV, the new regulator also provides more current. The graph below shows the current available on the new LV (ac03e) in blue compared to the old LV (ac03b) in purple. It is important to note that to use the full current available on the new A-Star Prime LV, you must connect to the VREG pin on the board and not the 5V ouput pin. The 5V output pin is limited to about 1.9 A because of the TPS2113A power multiplexer that makes up the board’s power selection circuit (a feature that sets the A-Star Primes apart from competing products). The power multiplexer decides whether the board’s 5 V supply is sourced from USB or an external supply via the regulator, allowing both sources to be connected at the same time and enabling the A-Star to safely and seamlessly transition between them. The multiplexer is configured to select external power unless the regulator output falls below about 4.5 V. If this happens, it will select the higher of the two sources, which will typically be the USB 5 V bus voltage if the A-Star is connected to USB. More information about the multiplexer can be found in this section of the A-Star 32U4 user’s guide under the Power heading.

Typical maximum output current of the 5 V regulators on the A-Star 32U4 Primes.

Power multiplexing circuit for the A-Star Prime LV.

The original version of the A-Star Prime LV, which operates from 2.7 V to 11.8 V, is now on clearance for 40% off! If you don’t need the increased output current and wider voltage range the new board offers, the previous version is still a great programmable controller to consider. Both the new and original A-Star Prime LVs come in multiple configurations. The complete selection of both versions can be found in the related products list below.

New product: 24V Step-Up/Step-Down Voltage Regulator S18V20F24

Posted by Emily on 18 February 2019
Tags: new products

The 24V Step-Up/Step-Down Voltage Regulator S18V20F24 is the newest addition to our line of S18V20x step-up/step-down voltage regulators.

This 24 V fixed-voltage version is a minor modification of the 9 V to 30 V adjustable version we have been making for years. We can make custom-voltage versions of most of our regulators, and this particular unit was initially one of those customizations we routinely offer. However, since 24 V seems like it might be common enough to be interesting to other customers, we have made it a stock product. Since we assemble these at our Las Vegas, Nevada facility, we can often make simple customizations that only require component changes within a few days. Besides changing output voltages on regulators, these changes could include changing LED colors, omitting components such as pull-up or pull-down resistors, and substituting components with higher temperature ratings or better tolerances. (We offer more involved customizations that require modified board layouts or new firmware features, but those take longer and have higher up-front engineering costs.)

Pololu electronics manufacturing area with multiple pick and place lines.

For those of you interested in the details of the actual product, the S18V20F24 efficiently produces a fixed 24 V output from input voltages between 3 V and 30 V while allowing a typical output current of up to 2 A when the input voltage is close to the output voltage. Its ability to convert both higher and lower input voltages makes it useful for applications where the power supply voltage can vary greatly, as with batteries that start above but discharge below the regulated voltage. Other features include integrated reverse-voltage protection, over-current protection, over-temperature shutoff, and under-voltage lockout.

Typical efficiency of Pololu 24V step-up/step down voltage regulator S18V20F24.

Typical maximum output current of Pololu fixed voltage step-up/step-down voltage regulators (S18V20F5, S18V20F6, S18V20F9, S18V20F12, and S18V20F24).

Alternate versions of this regulator include a fixed 5 V, 6 V, 9 V, or 12 V output or an adjustable 4 V to 12 V or 9 V to 30 V output. Our full selection of regulators and power supplies can be found here.

New products: 16 more QTR reflectance sensor arrays

Posted by Tony on 15 February 2019
Tags: new products

Our rapidly growing selection of new QTR sensors now includes high-density (HD) versions with 13 and 25 channels, and medium-density (MD) versions with 7 and 13 channels. These QTR sensors are well suited for applications that require detection of changes in reflectivity. This change in reflectivity can be due to a color change at a fixed distance, such as when sensing a black line on a white background, as well as due to a change in the distance to or presence of an object in front of the sensor. Just like the 16-channel medium-density arrays we released in December, the 13-channel medium-density modules use PCBs specifically designed for an 8 mm pitch that allow separate control of the odd and even emitters, which gives you extra options for detecting light reflected at various angles. They have the same board dimensions (101 × 16.5 mm) and mounting hole locations as the high-density (4 mm pitch) 25-channel arrays, but the pinout is different.

Each of these is available with two sensor options—traditional QTR and high-performance, low-current QTRX—and with analog or digital (RC) outputs, making 16 new products in all. Check out the QTR reflectance sensor category to see our full selection of new-style QTRs with black PCBs, which now stands at 96 varieties, and don’t forget to use our QTR introductory promotion to get 50% off any of these new sensors! (Limited to the first 100 customers who use coupon code QTRINTRO, limit 3 per item per customer.)

New product: Tic T249 USB Multi-Interface Stepper Motor Controller

Posted by David on 31 January 2019
Tags: new products tic
New product: Tic T249 USB Multi-Interface Stepper Motor Controller

I am excited to announce the release of the Tic T249 USB Multi-Interface Stepper Motor Controller, the fourth model in our line of Tic Stepper Motor Controllers. The Tic T249, which is based on the TB67S249FTG IC from Toshiba, features a broad 10 V to 47 V operating range and can deliver up to approximately 1.8 A per phase without a heat sink or forced air flow, making it our highest-power Tic yet. In addition to the array of high-level features offered by the other members of our Tic family, the Tic T249 offers access to several innovative features of the TB67S249FTG driver. Continued…

New product: STSPIN220 Low-Voltage Stepper Motor Driver Carrier with 1/256 microstepping

Posted by Ben on 16 January 2019
Tags: new products

I am happy to announce our first new product of 2019, a carrier board for the STSPIN220 stepper motor driver, which operates all the way down to 1.8 V, making it our lowest-voltage stepper motor driver. And like its higher-voltage sibling, the STSPIN820 that we released a few months ago, it offers microstepping down to 1/256 steps. This new carrier board has the same 16-pin, 0.6″ × 0.8″ form factor as our other popular stepper motor drivers, and as with our STSPIN820 carrier, it inverts the enable input so that it has the more familiar functionality of those drivers (but be careful not to pop these into a 12 V or 24 V socket!).

By the way, keep in mind that you do not necessarily need a low-voltage stepper motor driver just because your stepper motor has a low rated voltage. The voltage rating is just the voltage at which your stepper motor will draw its rated current, and it’s really the current rating that you need to be careful about if you want to avoid damaging your stepper motor. All of our stepper motor drivers let you limit the maximum current, so as long as you set the limit below the rated current, you will be within spec for your motor, even if the voltage exceeds the rated voltage. In general, using a high supply voltage along with active current limiting allows for better performance, so the main reason for using a low-voltage stepper motor driver like the STSPIN220 is if your supply voltage is constrained to some low value by some other aspect of your system.

This new release brings our selection of stepper motor drivers in this compact form factor to eleven:


A4988
(original)

A4988,
Black Ed.

DRV8825

DRV8834

DRV8880

MP6500,
Pot. CC

MP6500,
Digital CC

TB67S279­FTG

TB67S249­FTG

STSPIN­820

STSPIN­220
Driver chip: A4988 DRV8825 DRV8834 DRV8880 MP6500 TB67S279­FTG TB67S249­FTG STSPIN­820 STSPIN­220
Min operating voltage: 8 V 8.2 V 2.5 V 6.5 V 4.5 V 10 V 10 V 7 V 1.8 V
Max operating voltage: 35 V 45 V 10.8 V 45 V 35 V 47 V 47 V 45 V 10 V
Max continuous current per phase:(1) 1 A 1.2 A 1.5 A 1.5 A 1 A 1.5 A 1.1 A 1.6 A 0.9 A 1.1 A
Peak current per phase:(2) 2 A 2.2 A 2 A 1.6 A 2.5 A 2 A 2 A 4.5 A 1.5 A 1.3 A
Microstepping down to: 1/16 1/32 1/32 1/16 1/8 1/32 1/32 1/256 1/256
Board layer count: 2 4 4 4 4 4 4 4 4 4
Special features: high current low-voltage
operation,
high current
AutoTune,
digital current
reduction
high current digital current
control,
high current
Auto Gain Control,
ADMD,
high max voltage
Auto Gain Control,
ADMD,
high max voltage,
high current
128 and 256
microsteps,
high max
voltage
64, 128, and
256 microsteps,
low-voltage
operation
1-piece price: $4.49 $4.95 $15.95 $7.95 $8.95 $6.95 $6.95 $10.75 $12.95 $14.95 $7.95
1 On Pololu carrier board, at room temperature, and without additional cooling.
2 Maximum theoretical current based on components on the board (additional cooling required).

Last year, we began offering introductory specials to celebrate each newly released product, and we are continuing with that this year: the first 100 customers that use coupon code STSPIN220INTRO can get up to five units at just $3.77 each.

New products: 16-channel QTR MD reflectance sensor arrays

Posted by Ben on 28 December 2018
Tags: new products

QTR-MD-16A Reflectance Sensor Array.

We now have 16-sensor, medium-density (8mm-pitch) versions of our new QTR reflectance sensor arrays. Like the versions already released, these new modules are available in analog and RC configurations and with two different sensor types, resulting in four new products in all:

Unlike the medium-density (MD) arrays we have released previously, which just use the high-density PCBs in partially populated configurations, these new 16-channel modules use PCBs specifically designed for an 8 mm pitch. As a result, these are the first MD versions that allow separate control of the odd and even emitters, which gives you extra options for detecting light reflected at various angles. They have the same board dimensions (125 × 16.5 mm) and mounting hole locations as the high-density (4mm-pitch) 31-channel arrays, but the pinout is different.

QTR-MD-16A Reflectance Sensor Array.

QTR-HD-31A Reflectance Sensor Array.

For more information on our new QTR sensor family, you can see some of our previous blog posts about the versions we have already released:

Don’t forget to get in on our QTR introductory promotion! Be one of the first 100 customers to use coupon code QTRINTRO and get any of these new sensors at half price! (Limit 3 per item per customer.)

New product: 5-Channel Reflectance Sensor Array for Balboa 32U4 Balancing Robot

Posted by Emily on 21 December 2018

We now have a 5-Channel Reflectance Sensor Array designed specifically for use with the Balboa 32U4 Balancing Robot. The array mounts to the Balboa 32U4 control board and provides an easy way to add line sensing to the Balboa (but following a line while balancing is actually kinda hard—and that part is up to you, should you accept the challenge).


The array features five IR emitter/phototransistor pairs with dimmable brightness control similar to our line of QTR reflectance sensors.

As with all of our new products this year, we are offering an introductory special. The sensor by itself is already inexpensive, so just discounting that did not seem exciting enough. To make it more celebratory, we decided to offer a special promotion for the whole Balboa package: you can get a Balboa 32U4 robot kit with motors, wheels, and the new 5-Channel Reflectance Sensor Array for just $79! To get the discounted price, add this special promotion product bundle and coupon code BALBOAREFLECT to your cart. Offer is limited to the first 100 customers, limit one per customer. If you already have a Balboa, or if you want different motors or wheels than what’s included in the bundle, you can use coupon code BALBOAREFLECT2 to save 35% (limit 2 per item).

New products: special servos with position feedback

Posted by Brandon on 6 December 2018
Tags: new products

We are excited to announce the newest additions to our selection of servos:

These specially modified versions of the standard FEETECH FS90 and FS5103B servos provide direct access to the feedback potentiometer through an extra fourth wire. Additionally, the FS90-FB has an extra long cable relative to the standard FS90 micro servo. The inclusion of a feedback wire allows you to monitor the servo’s position, which is especially useful for more complex robotic applications. For example, it can be used for determining if the servo is stalled or when it has reached it’s target position. It also allows you to implement your own higher-level closed-loop position control or create servo movements by hand that you can record and play back later. This feedback voltage varies linearly over the servo’s range of motion.

These servos are similar to those used in the Robot Arm Kit for Romi and Micro Gripper Kit and can be used as replacements for those servos.

These are just the start of our eventual selection of FEETECH servos with position feedback, so keep an eye on our blog and New Products category for more to come!

New product: STSPIN820 Stepper Motor Driver Carrier with 1/256 microstepping

Posted by Jan on 27 November 2018
Tags: new products

We have yet another new stepper motor driver carrier in our popular 16-pin, 0.6″ × 0.8″ form factor, this time for STMicro’s STSPIN820, which offers 1/256 step microstepping! ST actually has their own similar evaluation board, the EVALSP820-XS, but the STSPIN820 chip has a non-inverted Enable input, which is inverted compared to most other stepper motor driver ICs out there, and they expose the pin that way on their version of the board. We have thoughtfully added a transistor-based inverter so that our board is more likely to work as a drop-in replacement (or upgrade!) for the stepper driver boards you already have. In our tests, the Pololu carrier supported a substantially higher maximum current than the ST eval board (around 900 mA compared to 720 mA, probably due to our board having four layers vs. two layers for the ST eval board), and as of this writing (27 November 2018), our board is also priced lower.

You can see the full schematic for all the details (this schematic is also available as a downloadable pdf (109k pdf)):

Schematic diagram of the STSPIN820 Stepper Motor Driver Carrier.

With our release earlier in November of compact carriers for Toshiba’s TB67S249FTG and TB67S279FTG stepper motor drivers, we now offer ten different stepper motor driver modules in this compact size:


A4988
(original)

A4988,
Black Ed.

DRV8825

DRV8834

DRV8880

MP6500,
Pot. CC

MP6500,
Digital CC

TB67S279­FTG

TB67S249­FTG

STSPIN­820
Driver chip: A4988 DRV8825 DRV8834 DRV8880 MP6500 TB67S279­FTG TB67S249­FTG STSPIN­820
Min operating voltage: 8 V 8.2 V 2.5 V 6.5 V 4.5 V 10 V 10 V 7 V
Max operating voltage: 35 V 45 V 10.8 V 45 V 35 V 47 V 47 V 45 V
Max continuous current per phase:(1) 1 A 1.2 A 1.5 A 1.5 A 1 A 1.5 A 1.1 A 1.6 A 0.9 A
Peak current per phase:(2) 2 A 2.2 A 2 A 1.6 A 2.5 A 2 A 2 A 4.5 A 1.5 A
Microstepping down to: 1/16 1/32 1/32 1/16 1/8 1/32 1/32 1/256
Board layer count: 2 4 4 4 4 4 4 4 4
Special features: high current low-voltage
operation,
high current
AutoTune,
digital current
reduction
high current digital current
control,
high current
Auto Gain Control,
ADMD,
high max voltage
Auto Gain Control,
ADMD,
high max voltage,
high current
128 and 256
microsteps
1-piece price: $4.49 $4.95 $15.95 $7.95 $8.95 $6.95 $6.95 $10.75 $12.95 $14.95
1 On Pololu carrier board, at room temperature, and without additional cooling.
2 Maximum theoretical current based on components on the board (additional cooling required).

As with all of our new products this year, we are offering an introductory special. The first 100 customers that use coupon code STSPIN820INTRO can get up to five units at just $5 each.

New RoboClaw and MCP motor controllers from Basicmicro

Posted by Ben on 17 November 2018
Tags: new products

RoboClaw 2×60AHV, 60VDC Motor Controller.

We are excited to offer eight new powerful motor controllers from Basicmicro (formerly Ion Motion Control):

The two new RoboClaws bring our total selection of those to nine versions. Unlike the other RoboClaws, which have a maximum operating voltage of 34 V, these new RoboClaws and some of the new MCP controllers can work up to 60 V and deliver a continuous 60 A or 120 A per channel, making them the most powerful motor controllers we carry by far.

MCP233 Dual 30A, 34VDC Advanced Motor Controller.

MCP263 Dual 60A, 34VDC Advanced Motor Controller.

MCP2163 Dual 160A, 34VDC Advanced Motor Controller.

The six MCP products are from Basicmicro’s rugged new line of MCP Advanced Motor Controllers, which are optionally programmable via a built-in scripting language and support a variety of interfaces, including USB serial, TTL serial, RS-232 serial, CAN bus, RC hobby servo pulses, and analog voltages. Here is a summary of the key features of the MCP:

  • Simple bidirectional control of two brushed DC motors
  • 10–34 V or 10–60 V operating supply range, depending on controller model
  • 30 A to 160 A maximum continuous current output, depending on controller model
  • Channel bridging allows control of a single motor with double the current capability
  • Automatic current limiting reduces duty cycle when temperature exceeds 85° C
  • Six communication or control options:
    1. USB serial interface (virtual COM port)
    2. 3.3 V logic-level (TTL) serial interface for direct connection to microcontrollers or other embedded controllers
    3. RS-232 serial interface
    4. CAN bus interface supporting CANopen protocol as master or slave device
    5. Hobby radio control (RC) pulse width interface for direct connection to an RC receiver or RC servo controller
    6. Analog voltage (0 V to 5 V) interface for direct connection to potentiometers and analog joysticks
  • Automatic control switching with user-defined priority settings
  • I²C interface accessible by user script
  • Up to 20 user-defined input pins for control, feedback, or scripting, depending on controller model
  • All inputs are 15 V tolerant for interfacing to industrial devices such as PLCs
  • Up to 8 user-defined open-drain output pins (40 V max) for driving auxiliary loads, depending on controller model
  • Multiple feedback options for PID closed-loop control:
    • Speed or position control with quadrature encoders, up to 21 million encoder pulses per second
    • Position control with analog encoders or potentiometers
    • (Open-loop control with no feedback also available)
  • Programmable with built-in user scripting language
  • Screw terminals for quick connect/disconnect
  • Configurable via USB connection and PC software
  • Regenerative braking
  • Tolerates high-speed direction changes
  • 5 V BEC can power external logic
  • Battery monitoring and under-voltage cutoff protects batteries from over-discharging
  • Fully enclosed for protection
  • Conduction plate for cooling on bottom of enclosure

New Products

ACS72981LLRATR-100B5 Current Sensor Large Carrier -100A to +100A, 5V
CT432-HSWF70DR TMR Current Sensor Large Carrier 0A to 70A, 5V
ACS72981ELRATR-200U3 Current Sensor Compact Carrier 0A to 200A, 3.3V
ACS72981LLRATR-050U3 Current Sensor Large Carrier 0A to 50A, 3.3V
CT432-HSWF30DR TMR Current Sensor Compact Carrier 0A to 30A, 5V
3.3V, 100mA Step-Down Voltage Regulator D45V1E2F3
A5984 Stepper Motor Driver Carrier, Fixed 1.5A@5V / 1A@3.3V, Blue Edition
ACS72981LLRATR-050B5 Current Sensor Compact Carrier -50A to +50A, 5V
1.4-7V, 3.8A Fine-Adjust Step-Down Voltage Regulator D30V33MAL
A5984 Stepper Motor Driver Carrier, Adjustable Current
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors