Pololu Blog (Page 2)

Welcome to the Pololu Blog, where we provide updates about what we and our customers are doing and thinking about. This blog used to be Pololu president Jan Malášek’s Engage Your Brain blog; you can view just those posts here.

Popular tags: community projects new products raspberry pi arduino more…

New products: S13V25Fx step-up/step-down voltage regulators with fixed 3.3V to 15V output voltages

Posted by Ben on 9 June 2023
Tags: new products

We have expanded our S13VxFx family of step-up/step-down voltage regulators to include options with a variety of output voltages from 3.3 V to 15 V. Like the original 5 V members of the family, these new S13V25Fx units take an input voltage from 2.8 V to 22 V and efficiently increase it or decrease it as necessary to produce the regulated output voltage. Even with their compact 0.9″ × 0.9″ size, they can deliver typical continuous output currents between 1 A and 3 A, making them our most powerful buck-boost converters. (That’s almost half the size of our previously highest-power step-up/step-down units, the S18V20Fx family, which are still being impacted by the global semiconductor shortages.) The graphs below show a more complete picture of the kinds of currents you can expect for different combinations of input and output voltages:

These new S13V25Fx versions do not include a 5V option because we already have that in the S13V30F5. They are pin-compatible with that 5V module and have the same overall board dimensions, but please note that the tall components (i.e. electrolytic capacitors and inductor) are in different locations. Here is a comparison of the new S13V25Fx regulators (left) next to the S13V30F5 (right):

Step-Up/Step-Down Voltage Regulator S13V25Fx, top view with labeled pinout.

5V, 3A Step-Up/Step-Down Voltage Regulator S13V30F5, top view with labeled pinout.

This table shows what the full family looks like now:

Regulator Output voltage Typical max continuous output current Input voltage range Typical efficiency Size Price
#4083: S13V10F5 5 V 1 A 2.8 V – 22 V 85% – 95% 0.35″ × 0.475″ $6.95
#4084: S13V15F5 5 V 1.5 A $8.95
#4085: S13V20F5 5 V 2 A $12.95
#4082: S13V30F5 5 V 3 A 0.9″ × 0.9″ $12.95
#4980: S13V25F3 New! 3.3 V 2.5 A $13.95
#4981: S13V25F6 New! 6 V 2.5 A $13.95
#4982: S13V25F7 New! 7.5 V 2.5 A $13.95
#4983: S13V25F9 New! 9 V 2.5 A $13.95
#4984: S13V25F12 New! 12 V 2.5 A $13.95
#4985: S13V25F15 New! 15 V 2.5 A $13.95

As a reminder, we manufacture these boards in-house at our Las Vegas facility, so we have the flexibility to make these regulators with custom fixed output voltages. If the voltage you need is not one of our standard options and you are interested in customization, please contact us.

3pi+ 2040 Robot full release with additional motor options

Posted by Ben on 8 June 2023

We have transitioned from our initial early-adopter release to a full release of the 3pi+ 2040 Robot family! With the full release, we also have some additional motor options. Here’s the full lineup:

3pi+ 2040 Version Products Micro Metal Gearmotor Top Speed Comments
Standard Edition assembled or kit 30:1 MP 6V 1.5 m/s good combination of speed and controllability
Turtle Edition assembled or kit 75:1 LP 6V 0.4 m/s longest battery life, easiest to control, good for swarm robots or introductory robotics courses
Hyper Edition assembled or kit 15:1 HPCB 6V ~4 m/s very fast and difficult to control, easy to damage; only recommended for advanced users

The Turtle Edition is a great choice for educational environments or anyplace else where slow, controlled speed is important. On the flip side, the Hyper Edition uses high-power motors with a low-gear-ratio gearbox to offer a LOT of speed, but this also means reduced control and a higher risk of the robot damaging itself, so we only recommend it for advanced users who want to push the limits of what this robot platform can do. We also make the 3pi+ 2040 control board and 3pi+ chassis available separately for those who would like to do something custom with one of our many other Micro Metal Gearmotor options.

To recap from our early adopter release announcement, this robot combines our 3pi+ chassis with the power of the Raspberry Pi RP2040 microcontroller, and it’s full of cool features:

We have a comprehensive set of example Python programs to help get you started using all of these features, and we expect to continue adding more over time. Let us know if there’s something in particular you would want to see that is not already covered!

MicroPython drive showing 3pi+ 2040 demo programs.

The blink.py demo program in a text editor.

Moving sculpture Kinetic Little Rain

Posted by Emily on 1 June 2023

This hypnotic video from customer Alain Haerri shows Kinetic Little Rain, a moving sculpture that was inspired by the sculpture Kinetic Rain in the Changi Airport in Singapore. Alain’s sculpture features 100 blown glass drops that are moved by stepper motors. Each motor is driven by its own Tic T500 Stepper Motor Controller and the whole setup is controlled by an Arduino Mega 2560.

Memorial Day Sale going on now!

Posted by Emily on 26 May 2023


If you have followed the electronics industry or even general news, you’ll know that for the past several years we’ve been dealing with parts shortages, rationing, and associated price increases. We are relieved to finally be getting net increases in parts on hand! In the past few months we have taken hundreds of products off rationing, and we are celebrating and highlighting them in our Memorial Day Sale. Use coupon code MEMORIALDAY23 to save 23% on all non-rationed Pololu-brand products with an “Active” or “Active and Preferred” status, limit 5 units per item, now through Tuesday, May 30.

Check out the sale page for more information. Please note that we will be closed Monday, so orders placed after 2 PM Pacific Time Friday, May 26 will be shipped on Tuesday, May 30.

Laser cutting part of a 50:1 model of the James Webb Space Telescope

Posted by Arthur on 28 March 2023

50:1 scale model of the James Web Space Telescope model with laser-cut and etched gold-mirror acrylic and gold-mirror styrene parts.

Retired aerospace engineer Robert Maier shared with us this awesome 50:1 scale model of the James Webb Space Telescope (JWST) he made with his brother Mark and a little help from our custom laser cutting service. We cut the JWST’s main mirrors for him out of 1.5 mm gold mirrored styrene sheets from Midwest Products, and the hexagon patterns were laser etched onto the surface. He also had us laser cut various silicone bands to hold the moving pieces of the structure as the model folds/unfolds.

JWST model, partially unfolded, with plastic figure to show 50:1 scale.

JWST model with thermal insulation Mylar, partially unfolded.

We more commonly work with 3 mm mirrored acrylic, but the model’s mirror required something thinner, and the more expensive styrene was perfect for the job. For comparison, the spiral label sitting beneath the figurine’s feet was cut from gold mirror acrylic.

Spiral label for a JWST model, laser cut end engraved on 3 mm gold mirror acrylic.

Gold mirrored acrylic.

Mark uses the model in the Astronomy 101 classes he teaches at San Jacinto College in Southern California. He recently wrote an article about the model, which is published in the April 2023 issue of Sky and Telescope magazine (it’s on page six). Additional photos of the model are included below, and even if you’re not a subscriber to the magazine, you can preview the article online.

JWST model, folded as it would be inside the Ariane 5 payload bay.

50:1 scale models of the James Web and Hale Telescopes

A close up of the unfolded JWST model’s primary mirrors, laser-cut from gold mirrored styrene.

Do you have a fun idea in mind that can benefit from laser-cut parts? Submit a quote request or contact us to discuss how we can help.

New product: LOCOSYS LC20031-V2 135-Channel Dual-Band GNSS Receiver Module

Posted by Kevin on 24 March 2023
Tags: new products

We’re now selling the LC20031-V2 GNSS receiver module from LOCOSYS. This module integrates a global navigation satellite system (GNSS) receiver with an on-board antenna, making it a complete solution for providing satellite-based position data (a “smart antenna”).

The LC20031-V2 outputs data at up to 10 Hz as NMEA sentences on a TTL-level serial port, or UART, and the module ships with a cable assembly that you can use to connect it to your project (either with a matching receptacle or by cutting off the connector to access the individual wire leads). A built-in rechargeable battery preserves system data while the module is inactive for rapid satellite acquisition on the next start-up.

Unlike GPS-only receivers such as the LS20031, the LC20031-V2 works with many different satellite systems. GPS, GLONASS, BeiDou, Galileo, and QZSS satellite signals are all supported, and the module can receive both L1 and L5 frequency band signals on up to 135 channels. This lets it achieve a typical position accuracy of 1.5 m CEP (circular error probable).

The GNSS Firebird software provided by LOCOSYS can be used to configure the LC20031-V2 and view its output. In this screenshot, you can easily see the different satellite systems that the receiver is tracking, represented by the different colors in the displays (GPS is blue, GLONASS is orange, Galileo is green, and BeiDou is red).

GNSS Firebird application showing data from an LC20031-V2 module inside Pololu’s offices.

Introducing the 3pi+ 2040 Robot

Posted by Jan on 7 March 2023

I am super excited to introduce our newest robot, the 3pi+ 2040. This robot combines the 3pi+ chassis, which we initially released in late 2020, with the power of the Raspberry Pi RP2040 microcontroller. Here is a quick overview of its features:

This summer will mark 15 years since we released our original 3pi robot, which was designed to be fast enough to be competitive in line following and maze solving events. The high speed offers interesting programming challenges not present in typical robot kits of that era; here is a video from back then in which Ben demonstrates his 3pi learning a maze and then going extra fast on longer straightaways:

Although we developed our first injection-molded parts (wheels, ball caster, and motor mounting brackets) for that design, it was still largely a “PCB on wheels” kind of robot. The next-generation 3pi+, with a chassis mechanically independent of any circuit board, had been in development for several years when the coronavirus pandemic hit in early 2020. We kept working on it throughout that year, culminating with the November release of the 3pi+ 32U4.

Original Pololu 3pi robot.

3pi+ 32U4 Robot.

The 3pi+ delivered the most-requested feature missing from the 3pi, wheel encoders, along with many other improvements including a full IMU, bumpers, and programmability over USB (the 3pi required an external AVR programmer). With its support in the Arduino environment, the ATmega32U4 continues to offer a good entry point for working with microcontrollers, but the 8-bit architecture and 32 KB of program memory feel increasingly outdated and constraining, especially with the new sensors available on the 3pi+.

That brings us to the new 3pi+ 2040, powered by the Raspberry Pi RP2040 microcontroller (32-bit dual-core Arm Cortex-M0+) with 16 MB (128 Mbit) of flash memory. The robot ships preloaded with a MicroPython interpreter, so you can get started right away by plugging into its USB C port and editing the included example Python programs with your favorite text editor. No special programmers or programming software are required, and you can write MicroPython code from practically any desktop or mobile operating system as long as it has a text editor and the ability to copy files to a USB drive. For a basic Python IDE that lets you run code interactively, we are recommending the Mu editor. (See the User’s Guide for instructions on setting it up.)

MicroPython drive showing 3pi+ 2040 demo programs.

The blink.py demo program in a text editor.

There are many other programming environments and languages that you can use with the 3pi+. Since it shares the same RP2040 processor as the Raspberry Pi Pico, anything that works for the Pico should be usable on the 3pi+, including C, C++, and the Arduino environment. We already include some basic C examples in our example code repository, and we plan to write more examples and expand the software support for this robot. Do you have a favorite IDE that works with the Pico? Is there some language or system you’d like to run on the 3pi+?

The menu of pre-installed demo programs on the 3pi+ 2040 Robot.

Early adopter special: We are initially offering the 3pi+ 2040 Robot as a limited release intended for advanced customers who have had some experience with robotics or Raspberry Pi RP2040 programming (e.g. with a Raspberry Pi Pico). The initial release is available with 30:1 MP motors (the “Standard Edition”), either assembled for 38% off or in kit form for 50% off. Early adopter robots will generally need to be backordered as they are built to order; we expect to ship within a business day of ordering. The robot hardware is finalized so the only changes we expect for the full product release are in the initial firmware configuration and pre-installed example programs. Documentation will also continue to be developed as we release the robot to a wider customer base. Early adopters who publicly share their 3pi+ 2040 experiences will be eligible for an additional robot with an extra $25 discount.

New products: Motoron M2T256 (I²C) and M2U256 (UART) dual motor controllers

Posted by Kevin on 21 December 2022
Tags: new products

The Motoron family keeps growing! We’re happy to announce the release of the Motoron M2T256 Dual I²C Motor Controller and the Motoron M2U256 Dual Serial Motor Controller. Unlike previous Motoron controllers, these boards are “micro” versions that fit the ability to drive two motors (at up to 48 V and 1.8 A) into a minimal, compact form factor. They have the same ability to be individually addressed as the other Motorons, allowing many of them to be controlled independently while connected to the same bus.

A Raspberry Pi Pico on a breadboard using a Motoron M2T256/M2U256 Dual Motor Controller to control two motors.

The M2T256 is controlled via I²C like all of our previous Motorons, but unlike all the others, the M2U256 offers logic-level serial (UART) communication to provide an alternative option for applications where an asynchronous serial interface is preferred. The M2U256 supports the Pololu serial protocol, letting it share a serial line with our other compatible serial controllers (including brushed motor controllers, stepper motor controllers, and servo controllers). Its firmware also includes some options that can help you use it on an RS-485 network (requires addition of external transceivers).

The M2T256 and M2U256 both measure only 0.6″ × 0.8″ and have nearly the same pinout; in fact, both of these Motoron versions use the same printed circuit board with only minor differences in components. (For example, a resonator is only present on the M2U256 because it needs more accurate timing for asynchronous serial communication.) Both versions are available either with header pins soldered in or with headers included but not soldered.

Motoron M2T256 Dual I²C Motor Controller, bottom view.

Motoron M2U256 Dual Serial Motor Controller, bottom view.

The Motoron M2U256 is the latest in a succession of compact motor controllers we’ve produced over the years that use an asynchronous serial (UART) protocol, beginning with one of our very first products, the Pololu Dual Serial Motor Controller. Using this interface made a lot of sense in the past because it was one of the most straightforward ways to communicate with devices using higher-level commands. However, some of the most popular embedded platforms today make it difficult: many Arduino boards use the UART for serial programming, which can conflict with other connected devices, and a Raspberry Pi can output bootloader messages over serial or unexpectedly scale its UART frequency along with its CPU speed.

Meanwhile, I²C has become more popular and easier to use on microcontrollers over time, and it has features like open-drain lines and built-in support for addressing that simplify working with several devices on a single bus. This was the reason for the Motoron family’s initial focus on I²C, which was a departure from our tradition of making serial motor controllers, but the M2U256 reflects our thinking that there are still some reasons to use asynchronous serial. For example, it’s still easier to connect a PC to a serial device (with a USB or RS-232 adapter) than to an I²C device. We expect to make more UART Motorons in the future, too.

Pololu Dual Serial Motor Controller.

Pololu Micro Dual Serial Motor Controller

Pololu qik 2s9v1 dual serial motor controller.

Here is our full lineup of Motoron controllers to date, encompassing both the new “micro” boards and the previously-released expansion boards for Arduino and Raspberry Pi:

Motoron motor controllers
micro versions

M2T256

M2U256
Control interface: I²C UART serial
Motor channels: 2 (dual)
Absolute max
input voltage:
48 V
Recommended max
nominal battery voltage:
36 V
Max continuous
current per channel:
1.8 A
Available versions:
Motoron motor controllers
Arduino and Raspberry Pi form factor versions

M3S256



M3H256

M2S24v14



M2H24v14

M2S24v16



M2H24v16

M2S18v18



M2H18v18

M2S18v20



M2H18v20
Control interface: I²C
Motor channels: 3 (triple) 2 (dual)
Absolute max
input voltage:
48 V 40 V 30 V
Recommended max
nominal battery voltage:
36 V 28 V 18 V
Max continuous
current per channel:
2 A 14 A 16 A 18 A 20 A
Available versions
for Arduino:
M3S256 M2S24v14 M2S24v16 M2S18v18 M2S18v20
Available versions
for Raspberry Pi:
M3H256 M2H24v14 M2H24v16 M2H18v18 M2H18v20

New Products: U3V16Fx Step-Up Voltage Regulators

Posted by Ben on 2 December 2022
Tags: new products

We are excited to introduce our new compact and efficient U3V16Fx family of boost voltage regulators, which can generate higher voltages from input voltages as low as 1.3 V (the minimum startup voltage is 2.7 V, but they will operate down to 1.3 V after that). It’s awesome how much power these deliver in such a tiny package! It’s a little difficult to quickly convey the power or current capabilities of boost converters, since the output power is limited by the input current (which can be up to 2 A with this new family), but we usually care about the output current, which is inversely proportional to the ratio by which you are boosting the voltage. For instance, if you are tripling your voltage from 3 V to 9 V, the maximum possible output current would be one third of that 2 A maximum input (assuming 100% efficiency). Continuous currents will be a little lower than peaks, and once you factor in real world efficiency (typically 80-95%), you can expect these kinds of maximum currents:

Efficiency is also a bit hard to capture without a ton of graphs, but here’s an example from the 12 V version:

Typical efficiency of 12V Step-Up Voltage Regulator U3V16F12.

The U3V16x family includes seven versions with fixed output voltages ranging from 3.3 V to 15 V:

These new regulators are the same size as the popular U3V12Fx boost regulators, which we had to discontinue due to key components becoming obsolete, and they offer superior performance, so they should work as drop-in replacements for those older regulators in most applications.

Our Black Friday/Cyber Monday Sale has started!

Posted by Emily on 22 November 2022


Our Black Friday / Cyber Monday sale is back! Visit the sale page to see all the available deals and add the necessary coupons to your cart. The sale runs through Monday, November 28, and most of the sale coupons can be used on backorders if we happen to run out of stock, but you should still get your orders as soon as possible since production of many items is limited by the global parts shortages, and lead times to make more can be long.

Please note that during the sale, our order fulfillment times might be longer than usual, but we will do our best to get your order shipped as fast as we can. Additionally, we are closed Thursday, November 24 for Thanksgiving. Happy Thanksgiving!

New Products

ACS72981LLRATR-100U5 Current Sensor Compact Carrier 0A to 100A, 5V
ACS72981LLRATR-050B3 Current Sensor Compact Carrier -50A to +50A, 3.3V
Zumo 2040 Robot (Assembled with 100:1 HP Motors)
ACS72981LLRATR-050B3 Current Sensor Large Carrier -50A to +50A, 3.3V
12V, 2.8A Step-Down Voltage Regulator D30V30F12
ACS72981LLRATR-100B5 Current Sensor Compact Carrier -100A to +100A, 5V
ACS72981LLRATR-100U5 Current Sensor Large Carrier 0A to 100A, 5V
Zumo 2040 Main Board
VL53L8CX Time-of-Flight 8×8-Zone Distance Sensor Carrier with Voltage Regulators, 400cm Max
ACS37220LEZATR-200B5 Current Sensor Compact Carrier -200A to +200A, 5V
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors