Pololu 9V Step-Up/Step-Down Voltage Regulator S10V3F9

Pololu item #: 2095
Brand: Pololu
Status: Obsolete 
RoHS 3 compliant

This product has been discontinued.

We recommend the S8V9F9 Step-up/Step-Down Voltage Regulator as an alternative.

This switching regulator uses the SEPIC topology to produce 9 V from input voltages between 2.5 V and 18 V. The wide input range coupled with its ability to convert both higher and lower input voltages makes it useful for applications where the power supply voltage can vary greatly, as with batteries that start above but discharge below 9 V. The compact (0.4″ × 0.575″) module can supply over 300 mA in typical applications.

Alternatives available with variations in these parameter(s): output voltage Select variant…

 Description Specs (10) Pictures (7) Resources (3) FAQs (0) On the blog (0) Distributors (0) 

Overview

The Pololu step-up/step-down voltage regulator S10V3F9 is a switching regulator (also called a switched-mode power supply (SMPS) or DC-to-DC converter) with a single-ended primary-inductor converter (SEPIC) topology. It takes an input voltage from 2.5 V to 18 V and increases or decreases the voltage to a fixed 9 V output with a typical efficiency of 70% to 80%.

This flexibility in input voltage is especially well-suited for battery-powered applications in which the battery voltage begins above 9 V and drops below as the battery discharges. Since it lacks the typical restriction that the battery voltage stay above the required voltage throughout its life, new battery packs and form factors can be considered. For instance, a 7-cell battery holder, which might have an 11 V output with fresh alkalines but an 8.4 V nominal voltage with NiMH cells and a 7 V output with partially discharged cells, can now be used to produce a steady 9 V output.

In typical applications, this regulator can deliver over 300 mA continuous; please see the graphs at the bottom of this page for a more detailed characterization. The regulator’s thermal shutdown prevents damage from overheating, but it does not have short-circuit or reverse-voltage protection.

This regulator is also available with a fixed 5 V output or a fixed 12 V output.

Features

  • Input voltage: 2.5 V to 18 V (can be higher than, the same as, or lower than the 9 V output)
  • Fixed 9 V output with 4% accuracy
  • Typical continuous output current: 300 mA (actual continuous output current depends on input voltage; see Typical Efficiency and Output Current section below for details)
  • <2 mA typical no-load quiescent current
  • Integrated over-temperature shutoff
  • Small size: 0.40″ × 0.575″ × 0.1″ (10 mm × 15 mm × 3 mm)

Using the Regulator

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Connections

This step-up/step-down regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

The SHDN pin can be driven low (under 0.4 V) to power down the regulator. The quiescent current in this shutdown mode is dominated by the current in the 10 kΩ pull-up resistor from SHDN to VIN. With SHDN held low, this resistor will draw 0.1 mA per volt on VIN (for example, the shutdown current with a 5 V input will be 0.5 mA). This pin should only ever be driven low or left floating; this can be accomplished with a physical switch that toggles it between ground and disconnected, or electrically with something like a transistor controlled by an I/O line.

The input voltage should be between 2.5 V and 18 V. Lower inputs can shut down the voltage regulator; higher inputs can destroy the regulator, so you should ensure that noise on your input is not excessive and be wary of destructive LC spikes (see below for more information).

The four connections are labeled on the back side of the PCB, and they are arranged with a 0.1″ spacing along the edge of the board for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1″ grid. You can solder wires directly to the board or solder in either the 4×1 straight male header strip or the 4×1 right-angle male header strip that is included.

Typical Efficiency and Output Current

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this switching regulator typically has an efficiency of 70% to 80%.

The maximum achievable output current of the board varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows output currents at which this voltage regulator’s over-temperature protection typically kicks in after a few seconds. These currents represent the limit of the regulator’s capability and cannot be sustained for long periods, so the continuous currents that the regulator can provide are typically lower.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator’s maximum voltage, the regulator can be destroyed. In our tests with typical power leads (~30" test clips), input voltages above 11 V caused spikes over 18 V. You can suppress such spikes by soldering a 33 μF or larger electrolytic capacitor close to the regulator between VIN and GND.

More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.

People often buy this product together with:

Pololu 5V Step-Up/Step-Down Voltage Regulator S7V7F5 Pololu 5V Step-Up/Step-Down Voltage Regulator S7V7F5
Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3 Pololu 3.3V Step-Up/Step-Down Voltage Regulator S7V8F3

Related Products

9V Step-Up/Step-Down Voltage Regulator S8V9F9
Pololu Adjustable Step-Up/Step-Down Voltage Regulator S7V8A
Pololu 9V, 600mA Step-Down Voltage Regulator D24V6F9
Pololu Adjustable Boost Regulator 2.5-9.5V
Mini Pushbutton Power Switch with Reverse Voltage Protection, SV
0.100" (2.54 mm) Breakaway Male Header: 1×40-Pin, Straight, Black
0.1" (2.54mm) Crimp Connector Housing: 1x4-Pin 10-Pack
0.100" (2.54 mm) Female Header: 1x4-Pin, Straight
1660-Point Breadboard
Rocker Switch: 3-Pin, SPDT, 10A

Related Categories

S8V9Fx Step-Up/Step-Down Voltage Regulators
Step-Up/Step-Down Voltage Regulators
Voltage Regulators and Power Supplies
Battery Holders
Batteries
Wires with Pre-Crimped Terminals
Premium Jumper Wires
Solderless Breadboards
Electronics Prototyping
4.8 V NiMH Battery Packs
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors