228:1 Plastic Gearmotor, Offset Output

Pololu item #: 1118
Brand: PCX
Status: Special Order Only 
RoHS 3 compliant

This product has been discontinued.

This 228:1 gearbox with brushed DC motor has a low-current motor and provides power and speed that is comparable to an RC servo at a fraction of the cost. It has a recommended operating voltage range of 3 V to 12 V.

Key specifications:

voltage no-load performance stall extrapolation
6 V 45 RPM, 70 mA 7.2 kg⋅cm (100 oz⋅in), 800 mA
 Description Specs (9) Pictures (11) Resources (2) FAQs (1) On the blog (2) 
I need additional information about this motor; do you have a datasheet?

No; the information we have available for this motor can be found on its product page. However, you can approximate various additional motor parameters from the information found in the “Specs” tab.

The electrical resistance of the motor can be approximated by dividing the rated voltage by the stall current (at the rated voltage). The electromotive force constant (Ke) can be approximated by dividing the rated voltage by the free-run speed (at the rated voltage). To approximate the motor torque constant (Kt), you can divide the stall torque by the stall current.

For pretty much any DC motor, the current, speed, power, and efficiency curves as a function of torque will look like those in the graph below (assuming motor voltage and temperature are constant):

The current and speed curves are approximately linear, and the product pages for our motors provide the approximate end points for these lines: (0 torque, no-load current) and (stall torque, stall current) for the red line, and (0 torque, no-load speed) and (stall torque, 0 speed) for the blue line.

The orange output power curve is the product of the speed and the torque, which results in an inverted parabola with its peak at 50% of the stall torque.

The green efficiency curve is the output power divided by the input power, where the input power is current times voltage. The voltage is constant, so you can divide the output power curve by the current line to get the general shape of the efficiency curve, which in turn lets you identify the torque, speed, and current that correspond to max efficiency.

There are many programs out there that you can use to generate these curves. For example, if you have access to MATLAB, you can use this customer-created MATLAB script to generate these motor plots for you from the specifications we provide for each gearmotor.

Note: A good general rule of thumb is to keep the continuous load on a DC motor from exceeding approximately 20% to 30% of the stall torque. Stalling gearmotors can greatly decrease their lifetimes, occasionally resulting in immediate damage to the gearbox or thermal damage to the motor windings or brushes. Do not expect to be able to safely operate a brushed DC gearmotor all the way to stall. The safe operating range will depend on the specifics of the gearmotor itself.

Related Products

Pololu Stamped Aluminum L-Bracket Pair for Plastic Gearmotors
Pololu Extended Stamped Aluminum L-Bracket Pair for Plastic Gearmotors
Solarbotics GMW (GM2/3/8/9 Gear Motor Mount - ONE mount)
DRV8833 Dual Motor Driver Carrier
TB6612FNG Dual Motor Driver Carrier
Baby Orangutan B-328 Robot Controller
Solarbotics GM2 224:1 Gear Motor Offset Output
Solarbotics GM8 143:1 Gear Motor Offset Output
Brushed DC Motor: 130-Size, 6V, 11.5kRPM, 800mA Stall

Related Categories

Motors and Gearboxes
Solarbotics Wheels
Brushed DC Motor Controllers
Brushed DC Motor Drivers
Robot Controllers
Pololu Metal Gearmotors
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors