DRV8824 Stepper Motor Driver Carrier, Low Current

Pololu item #: 2131

This product has been discontinued.

Please consider our DRV8825 or A4988 stepper motor drivers as alternatives.

This is a breakout board for TI’s DRV8824 microstepping bipolar stepper motor driver, a lower-current version of the DRV8825. It can deliver up to 0.75 A per coil without a heat sink (it is rated for up to 1.2 A per coil with sufficient additional cooling), and it has larger current-sense resistors than the DRV8825 that allow for improved microstepping performance at low currents. This carrier has the same pinout, interface, and features as our DRV8825 carrier, which means it can serve as a direct substitute for the DRV8825 carrier when using lower-current stepper motors. This board ships with 0.1″ male header pins included but not soldered in.

 Description Specs (10) Pictures (9) Resources (7) FAQs (4) On the blog (1) Distributors (0) 
I want to control a 3.9 V, 600 mA bipolar stepper motor, but this driver has a minimum operating voltage above 3.9 V. Can I use this driver without damaging the stepper motor?

Yes. To avoid damaging your stepper motor, you want to avoid exceeding the rated current, which is 600 mA in this instance. All of our stepper motor drivers let you limit the maximum current, so as long as you set the limit below the rated current, you will be within spec for your motor, even if the voltage exceeds the rated voltage. The voltage rating is just the voltage at which each coil draws the rated current, so the coils of your stepper motor will draw 600 mA at 3.9 V. By using a higher voltage along with active current limiting, the current is able to ramp up faster, which lets you achieve higher step rates than you could using the rated voltage.

If you do want to use a lower motor supply voltage for other reasons, consider using our DRV8834 or STSPIN-220 low-voltage stepper motor drivers.

Do I really need to set the current limit on my stepper motor driver before using it, and if so, how do I do it?

Yes, you do! Setting the current limit on your stepper motor driver carrier before connecting your motor is essential to making sure that it runs properly. An appropriate current limit also ensures that your motor is not allowed to draw more current than it or your driver can handle, since that is likely to damage one or both of them.

Setting the current limit on our A4988, DRV8825, DRV8824, DRV8834, DRV8880, STSPINx20, and TB67SxFTG stepper motor driver carriers is done by adjusting the on-board potentiometer. We strongly recommend using a multimeter to measure the VREF voltage while setting the current limit so you can be sure you set it to an appropriate value (just turning the pot randomly until things seem to work is not a good approach). The following video has more details on setting the current limit:

My DRV8824 stepper motor driver is overheating, but my power supply shows it’s drawing significantly less than 0.75 A per coil. What gives?

Measuring the current draw at the power supply does not necessarily provide an accurate measure of the coil current. Since the input voltage to the driver can be significantly higher than the coil voltage, the measured current on the power supply can be quite a bit lower than the coil current (the driver and coil basically act like a switching step-down power supply). Also, if the supply voltage is very high compared to what the motor needs to achieve the set current, the duty cycle will be very low, which also leads to significant differences between average and RMS currents: RMS current is what is relevant for power dissipation in the chip but many power supplies won’t show that. You should base your assessment of the coil current on the set current limit or by measuring the actual coil currents.

Please note that while the DRV8824 driver IC is rated for up to 1.6 A per coil, the 0.5 W current sense resistors are only rated for 1.2 A, and the chip by itself will overheat at lower currents. We have found that it generally requires a heat sink to deliver more than approximately 0.75 A per coil, but this number depends on factors such as ambient temperature and air flow. For example, sealing three DRV8824 driver carriers in close proximity in a small box will cause them to overheat at lower currents than a unit by itself in open air.

How do I connect my stepper motor to a bipolar stepper motor driver?
The answer to this question depends on the type of your stepper motor and how many wires it has. We have an application note that details possible methods for connecting stepper motors to bipolar drivers and controllers and the advantages and disadvantages of each option.

Related Products

DRV8825 Stepper Motor Driver Carrier, High Current
DRV8834 Low-Voltage Stepper Motor Driver Carrier
A4988 Stepper Motor Driver Carrier, Black Edition
A4988 Stepper Motor Driver Carrier
AMIS-30543 Stepper Motor Driver Carrier
Stepper Motor: Bipolar, 200 Steps/Rev, 20×30mm, 3.9V, 0.6 A/Phase
Stepper Motor: Bipolar, 200 Steps/Rev, 28×32mm, 3.8V, 0.67 A/Phase
Stepper Motor: Bipolar, 200 Steps/Rev, 28×45mm, 4.5V, 0.67 A/Phase
Stepper Motor: Bipolar, 200 Steps/Rev, 35×26mm, 7.4V, 0.28 A/Phase
Stepper Motor: Bipolar, 200 Steps/Rev, 35×28mm, 10V, 0.5 A/Phase
Sanyo Miniature Stepper Motor: Bipolar, 200 Steps/Rev, 14×30mm, 6.3V, 0.3 A/Phase

Related Categories

Stepper Motor Drivers
Stepper Motors
Premium Jumper Wires
Wires with Pre-Crimped Terminals
Solderless Breadboards
Log In
Pololu Robotics & Electronics
Shopping cart
(702) 262-6648
Same-day shipping, worldwide
Menu
Shop Blog Forum Support
My account Comments or questions? About Pololu Contact Ordering information Distributors