This is a merged information page for Item #4751.
View normal product page.
Pololu item #:
4751
Brand:
Pololu
Status:
Active and Preferred
This gearmotor is a powerful 12V brushed DC motor with a 18.75:1 metal gearbox and an integrated quadrature encoder with a resolution of 64 counts per revolution (CPR) of the motor shaft and 1200 CPR of the gearbox’s output shaft. The gearbox is composed mainly of spur gears, but it features helical gears for the first stage for reduced noise and improved efficiency. These units have a 16 mm-long, 6 mm-diameter D-shaped output shaft. This gearmotor is also available without an encoder.
voltage | no-load performance | stall extrapolation |
---|---|---|
12 V | 530 RPM, 200 mA | 8.5 kg⋅cm (120 oz⋅in), 5.5 A |
Alternatives available with variations in these parameter(s): gear ratio motor type encoders? Select variant…
Compare all products in 12V 37D Metal Gearmotors.
19:1 Metal Gearmotor 37Dx68L mm with 64 CPR Encoder (Helical Pinion). |
---|
19:1 Metal Gearmotor 37Dx68L mm with 64 CPR Encoder (Helical Pinion). |
---|
19:1 Metal Gearmotor 37Dx68L mm with 64 CPR Encoder (Helical Pinion). |
---|
37D Gearmotor (Helical Pinion) with the gearbox removed showing the helical pinion gear and first mating gear. |
---|
37D mm metal gearmotor with 64 CPR encoder connected to a Pololu 90×10mm wheel with a Pololu universal mounting hub. |
---|
37D mm metal gearmotor with 64 CPR encoder (with end cap removed). |
---|
37D mm metal gearmotor with 64 CPR encoder (with end cap removed). |
---|
37D mm metal gearmotor with 64 CPR encoder (with end cap removed). |
---|
The 25D and 37D mm metal gearmotors with encoders have cables that are terminated with a 6-pin, 0.1″-pitch female connector. |
---|
Encoder A and B outputs for 37D mm metal gearmotor with 64 CPR encoder (12V motor running at 12 V). |
---|
Dimensions of the 37D metal gearmotors with 64 CPR encoders. Units are mm over [inches]. |
---|
37D mm gearmotor (without encoder) with L-bracket and 6mm universal mounting hub. |
---|
37D mm gearmotor (without encoder) with L-bracket and 6mm universal mounting hub. |
---|
37D mm gearmotor (without encoder) with L-bracket and 6mm universal mounting hub. |
---|
37D mm Metal Gearmotor next to a Micro Metal Gearmotor for size comparison. |
---|
An assortment of Pololu metal gearmotors. |
---|
Measuring 37 mm (1.46″) in diameter, these brushed DC gearmotors are the largest and most powerful we carry. They are available in a range of gear ratios from 6.3:1 to 150:1 and with 12 V or 24 V motors, and all versions are available with integrated 64 CPR quadrature encoders on the motor shafts. The 12 V and 24 V motors offer approximately the same performance at their respective nominal voltages, with the 24 V motor drawing half the current of the 12 V motor. See the 37D metal gearmotor datasheet (2MB pdf) for more information, including detailed performance graphs for each gearmotor version. You can also use our dynamically sortable 37D gearmotor comparison table to search for the version that offers the best combination of speed, torque, and current draw for your particular application. A more basic comparison table is available below.
Rated Voltage |
Stall Current |
No-Load Current |
Gear Ratio | No-Load Speed (RPM) |
Extrapolated Stall Torque |
Max Power (W) |
Without Encoder |
With Encoder |
|
---|---|---|---|---|---|---|---|---|---|
(kg ⋅ cm) | (oz ⋅ in) | ||||||||
12 V | 5.5 A | 0.2 A | 1:1 (no gearbox) | 10,000 | 0.5 | 7 | – | – | item #4750 |
6.3:1 | 1600 | 3.0 | 42 | 12 | item #4747 | item #4757 | |||
10:1 | 1000 | 4.9 | 68 | 12 | item #4748 | item #4758 | |||
19:1 | 530 | 8.5 | 120 | 12 | item #4741 | item #4751 | |||
30:1 | 330 | 14 | 190 | 12 | item #4742 | item #4752 | |||
50:1 | 200 | 21 | 290 | 10 | item #4743 | item #4753 | |||
70:1 | 150 | 27 | 380 | 10* | item #4744 | item #4754 | |||
100:1 | 100 | 34 | 470 | 8* | item #4745 | item #4755 | |||
131:1 | 76 | 45 | 630 | 6* | item #4746 | item #4756 | |||
150:1 | 67 | 49 | 680 | 6* | item #2829 | item #2828 | |||
24 V | 3 A | 0.1 A | 1:1 (no gearbox) | 10,000 | 0.55 | 8 | – | – | item #4690 |
6.3:1 | 1600 | 3.5 | 49 | 14 | item #4688 | item #4698 | |||
10:1 | 1000 | 5.5 | 76 | 14 | item #4689 | item #4699 | |||
19:1 | 530 | 9.5 | 130 | 13 | item #4681 | item #4691 | |||
30:1 | 330 | 15 | 210 | 13 | item #4682 | item #4692 | |||
50:1 | 200 | 23 | 320 | 12 | item #4683 | item #4693 | |||
70:1 | 140 | 31 | 430 | 10* | item #4684 | item #4694 | |||
100:1 | 100 | 39 | 540 | 8* | item #4685 | item #4695 | |||
131:1 | 79 | 47 | 650 | 6* | item #4686 | item #4696 | |||
150:1 | 68 | 56 | 780 | 6* | item #4687 | item #4697 | |||
* Output power for these units is constrained by gearbox load limits; spec provided is output power at max recommended load of 10 kg⋅cm. |
Note: The listed stall torques and currents are theoretical extrapolations; units will typically stall well before these points as the motors heat up. Stalling or overloading gearmotors can greatly decrease their lifetimes and even result in immediate damage. The recommended upper limit for continuously applied loads is 10 kg-cm (150 oz-in), and the recommended upper limit for instantaneous torque is 25 kg-cm (350 oz-in). Stalls can also result in rapid (potentially on the order of seconds) thermal damage to the motor windings and brushes; a general recommendation for brushed DC motor operation is 25% or less of the stall current.
In general, these kinds of motors can run at voltages above and below the nominal voltages; lower voltages might not be practical, and higher voltages could start negatively affecting the life of the motor.
The gearboxes are composed mainly of spur gears, but they feature helical gears for the first stage for reduced noise and improved efficiency:
37D Gearmotor (Helical Pinion) with the gearbox removed showing the helical pinion gear and first mating gear. |
---|
On units with encoders, the encoder portion is protected by a black plastic end cap:
The end cap is easily removable if you need to access the encoder or want to slightly reduce the overall gearmotor size, but there is a little bit of base plastic that will remain, as shown in the pictures below:
This gearmotor is a powerful 12V brushed DC motor with a 18.75:1 metal gearbox and an integrated quadrature encoder that provides a resolution of 64 counts per revolution of the motor shaft, which corresponds to 1200 counts per revolution of the gearbox’s output shaft. These units have a 16 mm-long, 6 mm-diameter D-shaped output shaft. This gearmotor is also available without an encoder.
voltage | no-load performance | stall extrapolation |
---|---|---|
12 V | 530 RPM, 200 mA | 8.5 kg⋅cm (120 oz⋅in), 5.5 A |
Exact gear ratio: ``(25×30×30) / (10×10×12) = bb(18.75:1)``
Dimensions of the 37D metal gearmotors with 64 CPR encoders. Units are mm over [inches]. |
---|
This diagram is also available as a downloadable PDF (459k pdf).
Warning: Do not screw too far into the mounting holes as the screws can hit the gears. We recommend screwing no more than 3mm (0.12″) into the screw hole.
37D mm metal gearmotor with 64 CPR encoder (with end cap removed). |
---|
A two-channel Hall effect encoder is used to sense the rotation of a magnetic disk on a rear protrusion of the motor shaft. The quadrature encoder provides a resolution of 64 counts per revolution of the motor shaft when counting both edges of both channels. To compute the counts per revolution of the gearbox output, multiply the gear ratio by 64. The motor/encoder has six color-coded, 8″ (20 cm) leads terminated by a 1×6 female header with a 0.1″ pitch, as shown in the main product picture. This header works with standard 0.1″ male headers and our male jumper and precrimped wires. If this header is not convenient for your application, you can pull the crimped wires out of the header or cut the header off. The following table describes the wire functions:
Color | Function |
---|---|
Red | motor power (connects to one motor terminal) |
Black | motor power (connects to the other motor terminal) |
Green | encoder GND |
Blue | encoder Vcc (3.5 – 20 V) |
Yellow | encoder A output |
White | encoder B output |
The Hall sensor requires an input voltage, Vcc, between 3.5 and 20 V and draws a maximum of 10 mA. The A and B outputs are square waves from 0 V to Vcc approximately 90° out of phase. The frequency of the transitions tells you the speed of the motor, and the order of the transitions tells you the direction. The following oscilloscope capture shows the A and B (yellow and white) encoder outputs using a 12 V motor at 12 V and a Hall sensor Vcc of 5 V:
Encoder A and B outputs for 37D mm metal gearmotor with 64 CPR encoder (12V motor running at 12 V). |
---|
By counting both the rising and falling edges of both the A and B outputs, it is possible to get 64 counts per revolution of the motor shaft. Using just a single edge of one channel results in 16 counts per revolution of the motor shaft, so the frequency of the A output in the above oscilloscope capture is 16 times the motor rotation frequency.
|
|
|
|
For a general-purpose hex adapter, consider our 12mm hex wheel adapter (also available in an extended version), which lets you use these motors with many common hobby RC wheels.
12mm Hex Wheel Adapter for 6mm Shaft connecting a Wild Thumper Wheel to a 37D mm Metal Gearmotor. |
---|
Pololu Dual G2 High-Power Motor Driver 24v14 Shield for Arduino. |
---|
Pololu Dual G2 High-Power Motor Driver 24v14 for Raspberry Pi (assembled version) with included hardware. |
---|
Pololu dual VNH5019 motor driver shield for Arduino. |
---|
If you are looking for higher-level control interfaces, such as USB, RC, analog voltages, I²C, or TTL serial, consider our Motoron motor controllers, Jrk motor controllers, or RoboClaw motor controllers; these controllers are available in various power levels several of which can handle the 37D mm metal gearmotors (we generally recommend a motor controller that can handle continuous currents above the stall current of your motor).
Motoron M2S18v18 Dual High-Power Motor Controller Shield for Arduino (Connectors Soldered). |
---|
Jrk G2 21v3 USB Motor Controller with Feedback. |
---|
RoboClaw 2×7A Motor Controller (V5B) in its included case. |
---|
|
|
We offer a wide selection of metal gearmotors that offer different combinations of speed and torque. Our metal gearmotor comparison table can help you find the motor that best meets your project’s requirements.
Size: | 37D × 68L mm1 |
---|---|
Weight: | 200 g |
Shaft diameter: | 6 mm2 |
Gear ratio: | 18.75:1 |
---|---|
No-load speed @ 12V: | 530 rpm |
No-load current @ 12V: | 0.2 A |
Stall current @ 12V: | 5.5 A3 |
Stall torque @ 12V: | 8.5 kg·cm3 |
Max output power @ 12V: | 12 W |
No-load speed @ 6V: | 270 rpm4 |
No-load current @ 6V: | 0.15 A4 |
Stall current @ 6V: | 3.0 A4 |
Stall torque @ 6V: | 5.0 kg·cm4 |
Motor type: | 12V |
Max efficiency @ 12V: | 55 % |
---|---|
Speed at max efficiency: | 470 rpm |
Torque at max efficiency: | 1.0 kg·cm |
Current at max efficiency: | 0.76 A |
Output power at max efficiency: | 5.0 W |
Lead length: | 20 cm5 |
---|---|
Encoders?: | Y |
Encoder resolution: | 64 CPR |
This file contains 3D models (in the step file format) of the 37D mm gearmotors with and without encoders.
This MATLAB script, written by Ali Asgher Mansoor Habiby, plots speed, power, current draw, and efficiency as they vary with torque when you input the gearmotor specifications. It also prints the resistance of the motor, and the current draw and torque at which maximum efficiency and maximum power occur.
No! Stalls can result in rapid (potentially on the order of seconds) thermal damage to the motor windings and brushes; a general recommendation for brushed DC motor operation is 25% or less of the stall current, which means keeping continuously applied loads around 25% or less of the stall torque.
Additionally, for many of our gearmotors with high gear ratios, the extrapolated stall torque is beyond what the gearboxes are designed to handle, and a stall could instantly damage the gears. Make sure to keep applied loads within the published limits for your gearmotor.
Content creator Curio Res recently released a tutorial and accompanying video explaining how to control a DC motor with an encoder. The video and...