A-Star 32U4 Micro

This is a merged information page for Item #3101.
View normal product page.

Pololu item #: 3101
Brand: Pololu
Status: Active and Preferred 
RoHS 3 compliant


The A-Star 32U4 Micro is a tiny programmable module featuring the ATmega32U4 AVR microcontroller. It packs a Micro-USB interface and 18 digital input/output pins (of which 6 are available to be used as PWM outputs and 8 as analog inputs) onto a board measuring only 1″ × 0.6″ and ships preloaded with an Arduino-compatible bootloader.

Pictures

A-Star 32U4 Micro.

A-Star 32U4 Micro, top view.

A-Star 32U4 Micro, bottom view.

A-Star 32U4 Micro with soldered headers and connected USB cable.

A-Star 32U4 Micro, bottom view with U.S. quarter for size reference.

A-Star 32U4 Micro with included optional headers.

A-Star 32U4 Micro on a breadboard with a reset button connected.

From top to bottom: A-Star 32U4 Micro, Mini SV, and Prime SV.

Pololu A-Star 32U4 Micro, Pololu A-Star 32U4 Mini SV, Arduino Micro, and Arduino Leonardo.

A-Star 32U4 Micro pinout diagram.




A-Star 32U4 Micro, bottom view with U.S. quarter for size reference.

Overview

The Pololu A-Star 32U4 Micro is a general-purpose programmable module based on the ATmega32U4 AVR microcontroller from Microchip (formerly Atmel), which has 32 KB of flash program memory, 2.5 KB of RAM, and built-in USB functionality. Onboard features of the A-Star (abbreviated A*) include a 16 MHz resonator, a USB Micro-B connector, an in-system programming (ISP) header, and a pair of indicator LEDs. A voltage regulator and power selection circuit allow the board to be powered from either USB or an external 5.5 V to 15 V source, while a resettable PTC fuse on the USB VBUS supply and reverse protection on VIN help protect it from accidental damage.

The A-Star 32U4 Micro breaks out 15 general-purpose I/O lines along two rows of pins, including 6 usable as PWM outputs and 8 usable as analog inputs; another three GPIO pins can be accessed through the 6-pin ISP header. It fits all this into a 20-pin dual in-line package (DIP) measuring only 1″ × 0.6″ (even smaller than competing ATmega32U4 boards like the Teensy 2.0 and Pro Micro), and its 0.1″ pin spacing makes the A* easy to use with solderless breadboards, perfboards, and 0.1″-pitch connectors.

Our comprehensive user’s guide provides the basics you need to get started with the A-Star as well as detailed technical information for advanced users.

This product requires a USB A to Micro-B cable (not included) to connect to a computer.

Features

Arduino compatibility

The A-Star 32U4 ships with a preloaded Arduino-compatible bootloader (which uses 4 KB of flash memory, leaving 28 KB available for the user program). We provide a software add-on that enables the board to be easily programmed from the Arduino environment.

The A-Star 32U4 uses the same microcontroller as the Arduino Leonardo and Arduino Micro and runs at the same frequency, making it just as powerful. Although the larger boards offer a few more I/O pins, the A-Star 32U4 Micro fits in an area half that of the Arduino Micro, and it takes up only 11% as much area as a standard full-size Arduino!

Pololu A-Star 32U4 Micro, Pololu A-Star 32U4 Mini SV, Arduino Micro, and Arduino Leonardo.

Pinout

This diagram identifies the I/O and power pins on the A-Star 32U4 Micro; it is also available as a printable PDF (409k pdf). For more information about the ATmega32U4 microcontroller on this board, see Microchip’s ATmega32U4 documentation.

Printed on the A* circuit board are indicators that you can use to quickly identify each pin’s capabilities: a triangle next to the pin means it can be used as an analog input, and a square wave symbol under the pin number means it can be used as a PWM output.

The board can either be powered directly from the USB 5 V supply or from a separate 5.5 V to 15 V source on the VIN pin, which is reduced to 5 V by a 100 mA low-dropout (LDO) regulator; you can access this 5 V supply through the 5V power output pin. Additionally, the ATmega32U4 contains an internal 3.3 V regulator whose output is available on the 3V3 pin. Current drawn from the 3V3 output should not exceed about 50 mA, and when the board is being powered through VIN, the sum of the 5V output current, 3V3 output current, GPIO output current, and current used by the board itself (typically about 25 mA) should not exceed 100 mA.

Included hardware

A 1×20-pin breakaway 0.1″ male header is included with the A-Star 32U4 Micro, which can be soldered in to use the board with perfboards, breadboards, or 0.1″ female connectors. (The headers might ship already separated into two 1×10 pieces.) Also included is a 2×3 header that can be installed to allow external programming of the microcontroller through the AVR ISP interface, such as with our USB AVR programmer.

A-Star 32U4 Micro with included optional headers.

A-Star 32U4 Micro with soldered headers and connected USB cable.

The A-Star family

From top to bottom: A-Star 328PB Micro, 32U4 Micro, 32U4 Mini SV, and 32U4 Prime SV.

The A-Star 32U4 Micro is a part of our larger A-Star family, all of whose members are based on AVR microcontrollers and are preloaded with Arduino-compatible bootloaders. The table below shows some key features and specifications of our A-Star microcontroller boards to help you choose the right one for your application.







A-Star 328PB Micro A-Star 32U4 Micro A-Star 32U4 Mini ULV

A-Star 32U4 Mini LV

A-Star 32U4 Mini SV
A-Star 32U4 Prime LV

A-Star 32U4 Prime SV
A-Star 32U4 Robot Controller LV

A-Star 32U4 Robot Controller SV
Microcontroller: ATmega328PB ATmega32U4
User I/O lines: 24 18 26 26(1) 26(1)
Available PWM outputs: 9 6 7 7 7(1)
Analog inputs: 8 8 12 12 12(1)
Ground access points: 6 2 4 43 44
User LEDs: 1 2 3 3 3
User pushbuttons: 3 3
USB interface: yes yes yes yes
Reset button: yes   yes yes yes
Power switch:     yes yes
Buzzer option:     yes yes
microSD option:     yes  
LCD option:     yes  
Motor drivers:       yes
Operating voltage: 3.3V VCC: 3.8 V to 15 V
5V VCC: 5.5 V to 15 V
5.5 V to 15 V ULV: 0.5 V to 5.5 V
LV: 2.7 V to 11.8 V
SV: 5 V to 40 V
LV: 2 V to 16 V
SV: 5 V to 36 V
LV: 2.7 V to 11 V
SV: 5.5 V to 36 V
Regulator type: 3.3 V or 5 V linear 5 V linear 5 V switching

ULV: step-up
LV: step-up/step-down
SV: step-down
5 V switching

LV: step-up/step-down
SV: step-down
5 V switching

LV: step-up/step-down
SV: step-down
Regulated current:(2) 100 mA 100 mA ULV: 500 mA
LV: 1 A
SV: 800 mA
LV: 1.8 A
SV: 1 A
LV: 1 A
SV: 1.5 A
Dimensions: 1.3″ × 0.7″ 1″ × 0.6″ 1.9″ × 0.7″ 2.8″ × 2.1″ 2.6″ × 2.2″
Weight: 1.5 g(3) 1.3 g(3) 3.4 g(3) 13 g to 33 g 14 g to 23 g
Price: $8.95 $16.95 $24.95 to $24.95 $24.95 to $39.95 $29.95 to $39.95
1 Some microcontroller resources are used by on-board hardware.
2 These values are rough approximations for comparison purposes. Available current depends on input voltage, current consumed by the board, ambient conditions, and regulator topology. See product documentation and performance graphs for details.
3 Without included optional headers.

Dimensions

Size: 0.6″ × 1.05″ × 0.18″1
Weight: 1.3 g2

General specifications

Processor: ATmega32U4 @ 16 MHz
RAM size: 2560 bytes
Program memory size: 32 Kbytes3
Motor channels: 0
User I/O lines: 184
Minimum operating voltage: 5.5 V
Maximum operating voltage: 15 V
Logic voltage: 5 V
Reverse voltage protection?: Y5
External programmer required?: N

Identifying markings

PCB dev codes: ac01a
Other PCB markings: 0J8063

Notes:

1
Without included optional headers. This measurement includes the USB Micro-B connector, which extends 0.05″ past the edge of the PCB.
2
Without included optional headers.
3
Note that 4 KB of the MCU's 32 KB of flash memory is used by the pre-installed USB bootloader. All 32 KB is available when programming via the ISP header rather than the bootloader.
4
All 18 can be used as digital I/O and 8 can be used as analog inputs. 15 of the 18 are available along the sides for use in a breadboard; the remaining three are accessible through the ISP header.
5
On VIN.

Documentation and other information

File downloads

Recommended links

Frequently-asked questions

No FAQs available.

On the blog