This is a merged information page for Item #5240.
View normal product page.
Pololu item #:
5240
Brand:
Pololu
Status:
Active and Preferred
This board is a simple carrier of Allegro’s ACS71240KEXBLT-010B3 Hall effect-based, electrically isolated current sensor, which offers a low-resistance (~0.6 mΩ) current path and a high 120 kHz bandwidth for fast response times.
Part Suffix | Range | Supply Voltage | Sensitivity | Zero Point | Fault Trip Level |
---|---|---|---|---|---|
010B3 | ±10 A (bidirectional) | 3.0 V to 3.6 V | 132 mV/A | 1.65 V | ±10 A |
Alternatives available with variations in these parameter(s): current range Select variant…
Compare all products in ACS71240 Current Sensor Carriers.
ACS71240 Current Sensor Carrier. |
---|
ACS71240 Current Sensor Carrier pinout. |
---|
ACS71240KEXBLT-010B3 Current Sensor Carrier -10A to +10A, 3.3V, bottom view. |
---|
ACS71240 Current Sensor Carrier basic dimensions with US quarter for size reference. |
---|
ACS71240 Current Sensor Carrier basic hole dimensions. |
---|
ACS71240 Current Sensor Carrier, top view. |
---|
ACS71240 Current Sensor Carrier with a 5mm-pitch terminal block for the current path and header pins soldered for use with a breadboard. |
---|
ACS71240 Current Sensor Carrier with a 3.5mm-pitch terminal block for the current path. |
---|
ACS71240 Current Sensor Carrier with wires soldered directly to the board. |
---|
ACS71240 Current Sensor Carrier with wires connected via solderless ring terminals. |
---|
ACS72140 current sensor carrier schematic diagram. |
---|
We are offering these breakout boards with support from Allegro Microsystems as an easy way to use or evaluate their ACS71240 Hall effect-based, electrically isolated current sensors with overcurrent fault output; we therefore recommend careful reading of the ACS71240 datasheet before using this product. The following list details some of the sensor’s key features:
The pads are labeled on the bottom silkscreen. The silkscreen also shows the direction that is interpreted as positive current flow via the +i arrow.
|
|
This carrier features the ACS71240KEXBLT-010B3, which is intended for operation around 3.3 V and is designed for bidirectional input current from -10 A to +10 A. This version can be visually distinguished from the other versions by the “3V3 B10” printed on the bottom side, as shown in the left picture above.
Part Suffix | Range | Supply Voltage | Sensitivity | Zero Point | Fault Trip Level |
---|---|---|---|---|---|
010B3 | ±10 A (bidirectional) | 3.0 V to 3.6 V | 132 mV/A | 1.65 V | ±10 A |
This sensor has five required connections: the input current (IP+ and IP-), logic power (VCC and GND), and the sensor output (VIOUT).
The sensor requires a supply voltage of 3.0 V to 3.6 V to be connected across the VCC and GND pads, which are labeled on the bottom silkscreen. The sensor outputs an analog voltage on VIOUT that is centered at 1.65 V and changes by 132 mV per amp of input current, with positive current increasing the output voltage and negative current decreasing the output voltage:
``V_"IOUT" = 1.65 text(V) + 0.132 text(V)/text(A) * I_"P"``
``I_"P" = (V_"IOUT" – 1.65 text(V)) / (0.132 text(V)/text(A)) = (V_"IOUT" – 1.65 text(V)) * 7.58 text(A)/text(V)``
The output is not ratiometric, so the zero point and sensitivity are independent of the actual supply voltage.
The optional FAULT pin is normally at VCC and is pulled low when the IP current magnitude exceeds 10 A in either direction. This pin only asserts while the fault condition is present (it is not latched).
The FAULT, VIOUT, VCC, and GND pins work with 0.1″-pitch header pins and are compatible with standard solderless breadboards.
You can insert the board into your current path in a variety of ways. Holes with 0.1″, 3.5 mm, and 5 mm spacing are available as shown in the diagram above for connecting male header pins or terminal blocks. For high-current applications, you can solder wires directly to the through-holes that best match your wires, or you can use solderless ring terminal connectors. The largest through-holes are big enough for 8 AWG wires or #6 or M3.5 screws, and the second-largest through-holes (and mounting holes) are sized for 12 AWG wires or #2 or M2 screws. The pictures below show some of the possible connection options:
Warning: This product is intended for use below 30 V. Working with higher voltages can be extremely dangerous and should only be attempted by qualified individuals with appropriate equipment and experience.
ACS72140 current sensor carrier schematic diagram. |
---|
The dimension diagram is available as a downloadable PDF (274k pdf).
Thermal image of a high-current test of a Pololu current sensor carrier (not necessarily this product). |
---|
Depending on the version, the ACS71240 can measure up to ±50 A. However, the sensor chip will typically overheat at lower currents. In our tests, we found that our ACS71240 carrier board could conduct about 45 A continuously without reaching the thermal limit for the IC. Our tests were conducted at approximately 25°C ambient temperature with no forced air flow.
The actual current you can pass through the sensor will depend on how well you can keep it cool. The carrier’s printed circuit board is designed to help with this by drawing heat out of the sensor chip. Solid connections to the current path pins (such as with thick soldered wires or large, tightly-secured lugs) can also help reduce heat build-up in the sensor and carrier board.
Warning: Exceeding temperature or current limits can cause permanent damage to the sensor. If you are measuring an average continuous current greater than 30 A, we strongly recommend that you monitor the sensor’s temperature and look into additional cooling if necessary.
This product can get hot enough to burn you long before the chip overheats. Take care when handling this product and other components connected to it.
We have a variety of current sensors available with different ranges, sensitivities, and features. The table below summarizes our selection of active and preferred options:
ACS711 Current Sensor Carriers |
ACS71240 Current Sensor Carriers |
ACS724 Current Sensor Carriers |
ACS37220 Current Sensor Compact Carriers |
ACS37220 Current Sensor Large Carriers |
ACS37030 Current Sensor Compact Carriers |
ACS37030 Current Sensor Large Carriers |
ACS72981 Current Sensor Compact Carriers |
ACS72981 Current Sensor Large Carriers |
CT432/CT433 TMR Current Sensor Compact Carriers |
CT432/CT433 TMR Current Sensor Large Carriers |
|
---|---|---|---|---|---|---|---|---|---|---|---|
Allegro Sensor | ACS711KEXT | ACS71240 | ACS724LLCTR | ACS37220 | ACS37030 | ACS72981xLR | CT432/CT433 | ||||
Sensing technology | Hall effect | Hall effect | Hall effect | Hall effect | Hall effect + inductive coil | Hall effect | XtremeSense™ TMR (tunneling magnetoresistance) |
||||
Logic voltage range | 3.0–5.5 V | 3.3V ver: 3.0–3.6 V 5V ver: 4.5–5.5 V |
4.5–5.5 V | 3.3V versions: 3.15–3.45 V 5V versions: 4.5–5.5 V |
3.0–3.6 V | 3.3V versions: 3.0–3.6 V 5V versions: 4.5–5.5 V |
3.3V versions: 3.0–3.6 V 5V versions: 4.75–5.5 V |
||||
Family current range | 15.5–31 A | 10–50 A | 2.5–50 A | 100–200 A | 20–65 A | 50–200 A | 20–70 A | ||||
Current range/ sensitivity of individual versions |
Bidirectional:(1) ±15.5 A / 90 mV/A ±31 A / 45 mV/A |
3.3V Bidirectional: ±10 A / 132 mV/A ±30 A / 44 mV/A ±50 A / 26.4 mV/A 5V Bidirectional: ±10 A / 200 mV/A ±30 A / 66 mV/A ±50 A / 40 mV/A 5V Unidirectional: 0–50 A / 80 mv/A |
5V Bidirectional:(2) ±2.5 A / 800 mV/A ±5 A / 400 mV/A ±10 A / 200 mV/A ±20 A / 100 mV/A ±30 A / 66 mV/A ±50 A / 40 mV/A 5V Unidirectional:(2) 0–5 A / 800 mv/A 0–10 A / 400 mv/A 0–20 A / 200 mv/A 0–30 A / 133 mV/A |
3.3V Bidirectional: ±100 A / 13.2 mV/A ±150 A / 8.8 mV/A 5V Bidirectional: ±100 A / 20 mV/A ±150 A / 13.3 mV/A ±200 A / 10 mV/A |
3.3V Bidirectional: ±100 A / 13.2 mV/A ±150 A / 8.8 mV/A 5V Bidirectional: ±100 A / 20 mV/A ±150 A / 13.3 mV/A ±200 A / 10 mV/A |
3.3V Bidirectional: ±20 A / 66 mV/A ±65 A / 20.3 mV/A |
3.3V Bidirectional: ±65 A / 20.3 mV/A |
3.3V Bidirectional:(1) ±50 A / 26.4 mV/A ±100 A / 13.2 mV/A ±150 A / 8.8 mV/A ±200 A / 6.6 mV/A 3.3V Unidirectional:(1) 0–50 A / 52.8 mv/A 0–100 A / 26.4 mv/A 0–150 A / 17.6 mv/A 0–200 A / 13.2 mv/A 5V Bidirectional:(2) ±50 A / 40 mV/A ±100 A / 20 mV/A ±150 A / 13.3 mV/A ±200 A / 10 mV/A 5V Unidirectional:(2) 0–100 A / 40 mv/A 0–150 A / 26.7 mv/A |
3.3V Bidirectional:(1) ±50 A / 26.4 mV/A ±100 A / 13.2 mV/A ±150 A / 8.8 mV/A ±200 A / 6.6 mV/A 3.3V Unidirectional:(1) 0–50 A / 52.8 mv/A 0–100 A / 26.4 mv/A 0–150 A / 17.6 mv/A 0–200 A / 13.2 mv/A 5V Bidirectional:(2) ±50 A / 40 mV/A ±100 A / 20 mV/A ±150 A / 13.3 mV/A ±200 A / 10 mV/A 5V Unidirectional:(2) 0–100 A / 40 mv/A 0–150 A / 26.7 mv/A |
3.3V Bidirectional: ±20 A / 50 mV/A ±30 A / 33.3 mV/A ±50 A / 20 mV/A ±70 A / 14.3 mV/A 3.3V Unidirectional: 0–20 A / 100 mv/A 0–30 A / 66.7 mv/A 0–50 A / 40 mv/A 0–65 A / 30.8 mv/A 5V Bidirectional: ±20 A / 100 mV/A ±30 A / 66.7 mV/A ±50 A / 40 mV/A ±65 A / 30.8 mV/A 5V Unidirectional: 0–20 A / 200 mv/A 0–30 A / 133.3 mv/A 0–50 A / 80 mv/A 0–70 A / 57.1 mv/A |
3.3V Bidirectional: ±50 A / 20 mV/A ±70 A / 14.3 mV/A 3.3V Unidirectional: 0–50 A / 40 mv/A 0–65 A / 30.8 mv/A 5V Bidirectional: ±50 A / 40 mV/A ±65 A / 30.8 mV/A 5V Unidirectional: 0–50 A / 80 mv/A 0–70 A / 57.1 mv/A |
IC current path resistance | 0.6 mΩ | 0.6 mΩ | 0.6 mΩ | 0.1 mΩ | 0.7 mΩ | 0.2 mΩ | 1 mΩ | ||||
PCB | 2 layers, 2-oz copper |
2 layers, 2-oz copper |
2 layers, 2- or 4-oz copper(4) |
2 layers, 2-oz copper |
6 layers, 2-oz copper |
2 layers, 2-oz copper |
6 layers, 2-oz copper |
6 layers, 2-oz copper |
6 layers, 2-oz copper |
2 or 4 layers(5), 2-oz copper |
6 layers, 2-oz copper |
Max bandwidth | 100 kHz | 120 kHz | 120 kHz(3) | 150 kHz | 5 MHz | 250 kHz | 1 MHz | ||||
Size | 0.7″ × 0.8″ | 0.7″ × 0.8″ | 0.7″ × 0.8″ | 0.7″ × 0.8″ | 1.4″ × 1.2″ | 0.7″ × 0.8″ | 1.4″ × 1.2″ | 0.7″ × 0.8″ | 1.4″ × 1.2″ | 0.8″ × 1.1″ | 1.4″ × 1.2″ |
Overcurrent fault output |
User-configurable threshold | ||||||||||
Common-mode field rejection | |||||||||||
Nonratiometric output | |||||||||||
1-piece price | $3.49 | $3.95 | $6.95 – $7.49 | $4.95 | $7.95 | $7.95 | $10.95 | $9.95 | $12.95 | $8.95 | $12.95 |
(1) Sensitivity when Vcc = 3.3 V; actual sensitivity is ratiometric (i.e. it is proportional to Vcc).
(2) Sensitivity when Vcc = 5 V; actual sensitivity is ratiometric (i.e. it is proportional to Vcc).
(3) Bandwidth can be reduced by adding a filter capacitor.
(4) 50A version uses 4-oz copper PCB; all other versions use 2-oz copper.
(5) 50A and higher versions use a 4-layer PCB; all other versions use a 2-layer PCB.
You can also use the following selection box to see all these options sorted by current range:
Alternatives available with variations in these parameter(s): current range Select variant…
Size: | 0.7″ × 0.8″ |
---|---|
Weight: | 1.1 g |
Typical operating voltage: | 3.3 V |
---|---|
Current sense: | 132 mV/A |
Minimum logic voltage: | 3.0 V |
Maximum logic voltage: | 3.6 V |
Supply current: | 12 mA1 |
Current range: | -10A to +10A (bidirectional 10A), 3.3V |
Current sensor: | Allegro ACS71240KEXBLT-010B3 |
PCB dev codes: | cs02b |
---|---|
Other PCB markings: | 0J7387 |
Other PCB markings: | 3V3 B10 |
This DXF drawing shows the locations of all of the board’s holes.
This is the application note referenced on page 16 of the ACS724 datasheet, page 22 of the ACS71240 datasheet, and page 42 of the ACS72981xLR datasheet. The ACS720 is used validate the test methods presented, but these same methods and principles would also apply to the ACS724, ACS71240, and ACS72981.
Allegro product page for the ACS71240, where you can find additional application notes and other resources.
No FAQs available.
No blog posts to show.